Set of derivatives of basic functions

$$
\begin{aligned}
& \frac{d f(x)}{d x}=f^{\prime}(x)=f(x) \\
& C^{\prime}=0 ; \text { where } C \text { - constant } \\
& \left(x^{p}\right)^{\prime}=p \cdot x^{p-1} ; \text { where } p \in R \\
& (\sqrt[n]{x})^{\prime}=\frac{1}{n \cdot \sqrt[n]{x^{n-1}}} \\
& (\sin x)^{\prime}=\cos x \\
& (\cos x)^{\prime}=-\sin x \\
& \tan x=\frac{1}{\cos ^{2} x} \\
& (\cot x)^{\prime}=\frac{-1}{\sin ^{2} x} \\
& \left(e^{x}\right)^{\prime}=e^{x} \\
& \left(a^{x}\right)^{\prime}=a^{x} \cdot \ln a \\
& (\ln x)^{\prime}=\frac{1}{x} \\
& \left(\log _{a} x\right)^{\prime}=\frac{1}{x \cdot \ln a} \\
& (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\
& (\arccos x)^{\prime}=\frac{-1}{\sqrt{1-x^{2}}} \\
& (\arctan x)^{\prime}=\frac{1}{x^{2}+1} \\
& (\operatorname{arccot} x)^{\prime}=\frac{-1}{x^{2}+1}
\end{aligned}
$$

In geometric interpretation function’s derivative is tangent of angle ($\tan \Varangle \alpha$) by which tangent is inclined relative to the function.

Basic theorems for derivatives

If functions $f(x)$ and $g(x)$ are differentiable then functions $c \cdot f(x)\{c$ - constant $\}$, $f(x)+g(x), f(x)-g(x), f(x) \cdot g(x), \frac{f(x)}{g(x)}\{$ for points where $g(x) \neq 0\}$ are also differentiable.

Moreover:
$(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)$
$(f(x) \mp g(x))^{\prime}=f^{\prime}(x) \mp g^{\prime}(x)$
$(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
$\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}$

Theorems about derivative of complex function

Function $g(x)$ over function $f(x)$.
$(g(x) o f(x))^{\prime}=g^{\prime}(x) \cdot f(x) \cdot f^{\prime}(x)$

