Function's derivative definition

Function derivative is defined by following formula:

$$
\frac{d y(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{y(x+\Delta x)-y(x)}{\Delta x}
$$

Let's consider following example function $y(x)=x^{2}$

$$
\begin{gathered}
\frac{d y(x)}{d x}=\frac{d\left(x^{2}\right)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}= \\
\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{x^{2}+2 \cdot x \cdot \Delta x+\Delta x^{2}-x^{2}}{\Delta x}= \\
\lim _{\Delta x \rightarrow 0} \frac{2 \cdot x \cdot \Delta x+\Delta x^{2}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{2 \cdot x \cdot \Delta x}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\Delta x^{2}}{\Delta x}= \\
2 \cdot x \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}+\lim _{\Delta x \rightarrow 0} \Delta x=2 \cdot x \\
\frac{d\left(x^{2}\right)}{d x}=2 \cdot x
\end{gathered}
$$

