Indefinite integrals examples

Collection of examples with solutions indefinite integrals. Functions integration is inverse operation in comparison to functions derivatives calculation. In general integration is a summing of elementary elements dx.

Indefinite integrals of elementary functions

Indefinite integrals of basic functions.

Set of formulas for indefinite integrals of elementary functions.

Indefinite integrals of elementary functions

Indefinite integral example 1

Indefinite integral - example 1.

Solved example with indefinite integral of function f(x)=sin(4·x)/(1+2·cos(4·x)).

Indefinite integral - example 1

Indefinite integral example 2

Indefinite integral - example 2.

Solved example with indefinite integral of function f(x)=(3·x+7)1/2.

Indefinite integral - example 2

Indefinite integral example 3

Indefinite integral - example 3.

Solved example with indefinite integral of function f(x)=2/(3·x+1).

Indefinite integral - example 3

Indefinite integral example 4

Indefinite integral - example 4.

Solved example with indefinite integral of function f(x)=(1+sinx)1/2·cosx.

Indefinite integral - example 4

Indefinite integral example 5

Indefinite integral - example 5.

Solved example with indefinite integral of function f(x)=x·ex. Theorem about integration by parts is used.

Indefinite integral - example 5

Indefinite integral example 6

Indefinite integral - example 6.

Solved example with indefinite integral of function f(x)=x3·ln(x). Theorem about integration by parts is used.

Indefinite integral - example 6

Indefinite integral example 7

Indefinite integral - example 7.

Solved example with indefinite integral of function f(x)=x2·ex. In example theorem about integration by parts is used twice. At the end of integration, a derivative of integrated function is calculated in purpose to check integration correctness.

Indefinite integral - example 7

Indefinite integral example 8

Indefinite integral - example 8.

Solved example with indefinite integral of function f(x)=x3·ex2. In example theorem about integration by parts is used three times. At the end of integration, a derivative of integrated function is calculated in purpose to check integration correctness.

Indefinite integral - example 8

Indefinite integral example 9

Indefinite integral - example 9.

Solved example with indefinite integral of function f(x)=35·x. In example theorem about integration by substitution is applied. At the end of integration, a derivative of integrated function is calculated in purpose to check integration correctness.

Indefinite integral - example 9

Indefinite integral example 10

Indefinite integral - example 10.

Solved example with indefinite integral of function f(x)=sin(x/2)+cos(2·x). In example theorem about integration a sum of two functions is applied.

Indefinite integral - example 10

Indefinite integral example 11

Indefinite integral - example 11.

Solved example with indefinite integral of function f(x)=2/(cos2(3·x)). In example theorem about integration by substitution is applied.

Indefinite integral - example 11

Indefinite integral example 12

Indefinite integral - example 12.

Solved example with indefinite integral of function f(x)=1/(1-sin2(x)). Pythagorean identity is applied during calculations. Application of Pythagorean identity allows to recalculate function to form of elementary function.

Indefinite integral - example 12

Indefinite integral example 13

Indefinite integral - example 13.

Solved example with indefinite integral of function f(x)=(1-sin2(x))/cos(x). Pythagorean identity is applied during calculations. Application of Pythagorean identity allows to recalculate function to form of elementary function. Pythagorean identity → sin2x + cos2x = 1.

Indefinite integral - example 13

Indefinite integral example 14

Indefinite integral - example 14.

Solved example with indefinite integral of function f(x)=(1-cos2(x))/sin(x). Pythagorean identity is applied during calculations. Application of Pythagorean identity allows to recalculate function to form of elementary function. Pythagorean identity → sin2x + cos2x = 1.

Indefinite integral - example 14

Indefinite integral example 15

Indefinite integral - example 15.

Solved example with indefinite integral of function f(x)=1/(x2+8). In example theorem about integration by substitution is applied. Formulas for integrals of elementary functions are also used.

Indefinite integral - example 15