Movement equation of harmonic oscillator

Material point with mass $m[\mathrm{~kg}]$ is hanged via spring to the ceiling. Spring has stiffness $k\left[\frac{N}{m}\right]$. We assume that there is no gravity field and also that motion takes place in vacuum. At time $t=0$ material point is equilibrium position. After a while material point is precipitated from equilibrium position and on material point works force which is proportional to spring's stiffness and deflection from equilibrium position.

We write motion equation

$$
m \cdot a=-k \cdot \Delta x
$$

Force which works on material point has negative sign because its direction is opposite to direction of deflection.

$$
\begin{aligned}
& m \cdot \frac{d^{2} x}{d t^{2}}=-k \cdot \Delta x \\
& m \cdot \frac{d^{2} x}{d t^{2}}+k \cdot \Delta x=0 \\
& \frac{d^{2} x}{d t^{2}}+\frac{k}{m} \cdot \Delta x=0 \\
& \frac{d^{2} x}{d t^{2}}+\omega^{2} \cdot \Delta x=0 ; \text { where } \omega^{2}=\frac{k}{m}
\end{aligned}
$$

As you see above motion equation of harmonic oscillator is differential equation.
Characteristic equation for differential equation is following

$$
r^{2}+\omega^{2}=0
$$

Quadratic equation above has two solutions

$$
\begin{gathered}
r_{0 _1}=i \cdot \omega \\
r_{0 _2}=-i \cdot \omega \\
i^{2}=-1 ; \text { where } i \text { is imaginary unit }
\end{gathered}
$$

http://www.mbstudent.com/physics-examples.html

As you know from mathematics general solution of differential equation from our example is in form

$$
x(t)=C_{1} \cdot e^{i \cdot \omega \cdot t}+C_{2} \cdot e^{-i \cdot \omega \cdot t}
$$

Now we have to calculate value of constants C_{1} and C_{2}. We will use border conditions. First condition is $x(t=0)=0$.

$$
\begin{gathered}
0=C_{1} \cdot e^{i \cdot \omega \cdot 0}+C_{2} \cdot e^{-i \cdot \omega \cdot 0} \rightarrow C_{2}=-C_{1} \\
x(t)=C_{1} \cdot e^{i \cdot \omega \cdot t}-C_{1} \cdot e^{-i \cdot \omega \cdot t}
\end{gathered}
$$

We will change representation from exponential form to trigonometric form.

$$
\begin{gathered}
x(t)=C_{1} \cdot(\cos \omega \cdot t+i \cdot \sin \omega \cdot t)-C_{1} \cdot(\cos \omega \cdot t-i \cdot \sin \omega \cdot t) \\
x(t)=C_{1} \cdot \cos \omega \cdot t+i \cdot C_{1} \cdot \sin \omega \cdot t-C_{1} \cdot \cos \omega \cdot t+i \cdot C_{1} \cdot \sin \omega \cdot t \\
x(t)=i \cdot C_{1} \cdot \sin \omega \cdot t+i \cdot C_{1} \cdot \sin \omega \cdot t \\
x(t)=2 \cdot i \cdot C_{1} \cdot \sin \omega \cdot t \\
x(t)=A \cdot \sin \omega \cdot t
\end{gathered}
$$

Where
A-amplitude
$\omega=2 \cdot \pi \cdot f-$ pulsation

Velocity is derivative of road

$$
\frac{d x}{d t}=\dot{x}(t)=A \cdot \omega \cdot \cos \omega \cdot t
$$

Acceleration is derivative of velocity

$$
\frac{d^{2} x}{d t^{2}}=\ddot{x}(t)=-A \cdot \omega^{2} \cdot \sin \omega \cdot t
$$

On next page are placed example plots of position $x(t)$, velocity $\dot{x}(t)$, and acceleration $\ddot{x}(t)$. Plots were draw for input data:

$$
A=1[\mathrm{~m}] ; \omega=100 \cdot \Pi\left[\frac{\mathrm{rad}}{\mathrm{~s}}\right] ; T=0,02[\mathrm{~s}]
$$

Drawing 1. Plots of position, velocity and acceleration. All are plotted as a function of time.

