Robotics - forward kinematics

Drawing 1. Model of manipulator.

Table with Denavit-Hartenberg's parameters

i	α_{i-1}	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	$\theta_{1}(t)$
2	0	0	$d_{2}(t)$	0
3	$-\frac{\pi}{2}$	0	0	$\theta_{3}(t)$
4	$-\frac{\pi}{2}$	0	l_{3}	$\theta_{4}(t)$
5	$-\frac{\pi}{2}$	0	0	$\theta_{5}(t)$

Matrix ${ }_{i}^{i-1} T$ describes transformation form coordinate system „i" to coordinate system " $i-1$ "

$$
{ }_{i}^{i-1} T=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & a_{i-1} \\
s \theta_{i} \cdot c \alpha_{i-1} & c \theta_{i} \cdot c \alpha_{i-1} & -s \alpha_{i-1} & -s \alpha_{i-1} \cdot d_{i} \\
s \theta_{i} \cdot s \alpha_{i-1} & c \theta_{i} \cdot s \alpha_{i-1} & c \alpha_{i-1} & c \alpha_{i-1} \cdot d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

In transformation matrix we use shortened notation of trigonometric functions

$$
\begin{aligned}
& s \theta_{i} \rightarrow \sin \theta_{i} \text { oraz } c \theta_{i} \\
& \rightarrow \cos \theta_{i} \\
& s \theta_{i} \rightarrow \sin \theta_{i} \text { and } c \theta_{i}
\end{aligned} \rightarrow \cos \theta_{i} .
$$

Transformation matrix which describes transformation from system " $i=1$ " to " $i=0$ ".

$$
\begin{gathered}
{ }_{1}^{0} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{1} & -s \theta_{1} & 0 & a_{0} \\
s \theta_{1} \cdot c \alpha_{0} & c \theta_{1} \cdot c \alpha_{0} & -s \alpha_{0} & -s \alpha_{0} \cdot d_{1} \\
s \theta_{1} \cdot s \alpha_{0} & c \theta_{1} \cdot s \alpha_{0} & c \alpha_{0} & c \alpha_{0} \cdot d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{1}^{0} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{1}(t) & -s \theta_{1}(t) & 0 & 0 \\
s \theta_{1}(t) & c \theta_{1}(t) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Transformation matrix which describes transformation from system " $i=2$ " to " $i=1$ ".

$$
\begin{gathered}
{ }_{2}^{1} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{2} & -s \theta_{2} & 0 & a_{1} \\
s \theta_{2} \cdot c \alpha_{1} & c \theta_{2} \cdot c \alpha_{1} & -s \alpha_{1} & -s \alpha_{1} \cdot d_{2} \\
s \theta_{2} \cdot s \alpha_{1} & c \theta_{2} \cdot s \alpha_{1} & c \alpha_{1} & c \alpha_{1} \cdot d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{2}^{1} \boldsymbol{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{2}(t) \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Transformation matrix which describes transformation from system " $i=3$ " to " $i=2$ ".

$$
\begin{gathered}
{ }_{3}^{2} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{3} & -s \theta_{3} & 0 & a_{2} \\
s \theta_{3} \cdot c \alpha_{2} & c \theta_{3} \cdot c \alpha_{2} & -s \alpha_{2} & -s \alpha_{2} \cdot d_{3} \\
s \theta_{3} \cdot s \alpha_{2} & c \theta_{3} \cdot s \alpha_{2} & c \alpha_{2} & c \alpha_{2} \cdot d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{3}^{2} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{3}(t) & -s \theta_{3}(t) & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s \theta_{3}(t) & -c \theta_{3}(t) & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Transformation matrix which describes transformation from system " $i=4$ " to " $i=3$ ".

$$
\begin{gathered}
{ }_{4}^{3} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{4} & -s \theta_{4} & 0 & a_{3} \\
s \theta_{4} \cdot c \alpha_{3} & c \theta_{4} \cdot c \alpha_{3} & -s \alpha_{3} & -s \alpha_{3} \cdot d_{4} \\
s \theta_{4} \cdot s \alpha_{3} & c \theta_{4} \cdot s \alpha_{3} & c \alpha_{3} & c \alpha_{3} \cdot d_{4} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{4}^{3} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{4}(t) & -s \theta_{4}(t) & 0 & 0 \\
0 & 0 & 1 & l_{3} \\
-s \theta_{4}(t) & -c \theta_{4}(t) & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Transformation matrix which describes transformation from system " $i=5$ " to " $i=4$ ".

$$
\begin{gathered}
{ }_{5}^{4} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{5} & -s \theta_{5} & 0 & a_{4} \\
s \theta_{5} \cdot c \alpha_{4} & c \theta_{5} \cdot c \alpha_{4} & -s \alpha_{4} & -s \alpha_{4} \cdot d_{5} \\
s \theta_{5} \cdot s \alpha_{4} & c \theta_{5} \cdot s \alpha_{4} & c \alpha_{4} & c \alpha_{4} \cdot d_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
{ }_{5}^{4} \boldsymbol{T}=\left[\begin{array}{cccc}
c \theta_{5}(t) & -s \theta_{5}(t) & 0 & 0 \\
0 & 0 & 1 & 0 \\
-s \theta_{5}(t) & -c \theta_{5}(t) & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\boldsymbol{T}_{5}^{0}=\boldsymbol{T}_{1}^{0} \cdot \boldsymbol{T}_{2}^{1} \cdot \boldsymbol{T}_{3}^{2} \cdot \boldsymbol{T}_{4}^{3} \cdot \boldsymbol{T}_{5}^{4}
\end{gathered}
$$

Position of any vector \boldsymbol{P} in coordinate system " $i=5$ " defined in coordinate system " $i=0$ ", is given by equation.

$$
\boldsymbol{P}^{0}=\boldsymbol{T}_{5}^{0} \cdot \boldsymbol{P}^{5}
$$

